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ABSTRACT

Sertoli cell tight junctions (TJs) form at puberty as a major
component of the blood-testis barrier (BTB), which is essential
for spermatogenesis. This study characterized the hormonal
induction of functional Sertoli cell TJ formation in vivo using the
gonadotropin-deficient hypogonadal (hpg) mouse that displays
prepubertal spermatogenic arrest. Androgen actions were
determined in hpg mice treated for 2 or 10 days with
dihydrotestosterone (DHT). Follicle-stimulating hormone (FSH)
actions were studied in hpg mice expressing transgenic human
FSH (hpg+tgFSH) with or without DHT treatment. TJ formation
was examined by mRNA expression and immunolocalization of
TJ proteins claudin-3 and claudin-11, and barrier functionality
was examined by biotin tracer permeability. Immunolocaliza-
tion of claudin-3 and claudin-11 was extensive at wild-type (wt)
Sertoli cell TJs, which functionally excluded permeability tracer.
In contrast, seminiferous tubules of hpg testes lacked claudin-3,
but claudin-11 protein was present in adluminal regions of
Sertoli cells. Biotin tracer permeated throughout these tubules,
demonstrating dysfunctional TJs. In hpg+tgFSH testes, claudin-3
was generally absent, but claudin-11 had redistributed basally
toward the TJs, where function was variable. In hpg testes, DHT
treatment stimulated the redistribution of claudin-11 protein
toward the basal region of Sertoli cells by Day 2, increased
Cldn3 and Cldn11 mRNA expression, then induced the
formation of functional TJs containing both proteins by Day
10. In hpg+tgFSH testes, TJ protein redistribution was acceler-
ated and functional TJs formed by Day 2 of DHT treatment. We
conclude that androgen stimulates initial Sertoli cell TJ
formation and function in mice, whereas FSH activity is
insufficient alone, but augments androgen-induced TJ function.

blood-testis barrier, claudin-3, claudin-11, gonadotropins, Sertoli
cells, spermatogenesis, tight junctions

INTRODUCTION

The Sertoli cell of the seminiferous epithelium regulates
spermatogenesis by providing nutritional and structural support
to developing germ cells [1–3]. Early germ cell types
(spermatogonia, primary spermatocytes) are located basally to
Sertoli cell tight junctions (TJs), which are a major component
of the blood-testis barrier (BTB) [4], while meiotic and
postmeiotic germ cells (secondary spermatocytes, round and
elongate spermatids) are found on the luminal side of the TJs.
As the Sertoli cell TJ seals adjacent Sertoli cell membranes, it
effectively sequesters adluminal germ cells from the vascula-
ture of the testicular interstitium [5, 6]. Sertoli cell TJs are
essential for fertility, and it is well known that their disruption
leads to germ cell atresia and cessation of spermatogenesis [6,
7].

Sertoli cell TJs form at puberty in association with an
increase in circulating luteinizing hormone (LH)/testosterone
and follicle-stimulating hormone (FSH) [7, 8]. Prior to puberty,
functional TJs are not present and the epithelium is permeable
to tracers including horseradish peroxidase and lanthanum,
whereas after puberty, TJs exclude these tracers [9, 10] and
contain members of the transmembrane claudin family [11],
junctional adhesion molecule (JAM) family [12], and occlud-
ing [13] (for reviews see [14, 15]).

Several studies provide direct evidence for the maintenance
of TJs by gonadotropins in vitro and in vivo. Testosterone
regulates the localization of the two major TJ transmembrane
proteins, claudin-11 and occludin, to TJs between immature
Sertoli cells in vitro [16, 17], and also stimulates claudin-11
mRNA expression [16, 18]. Consistent with these studies,
administration of the androgen-receptor antagonist flutamide to
prepubertal and adult rats in vivo disrupted claudin-11 mRNA
expression and protein [18]. Alternatively, FSH regulates the
localization of claudin-11 to the Sertoli cell TJ in the seasonally
regressed testes of the Djungarian hamster in vivo [19].
Recently, we demonstrated the loss of TJ function and TJ
protein localization in adult male rats in which circulating
gonadotropins were chronically suppressed with the gonado-
tropin-releasing hormone (GnRH) antagonist acyline [20]. This
effect was partially reversible via short-term hormone replace-
ment [20]. Another claudin family member, claudin-3, is found
at the Sertoli cell TJ during TJ restructuring as germ cells
migrate into the luminal compartment of the seminiferous
epithelium in mice and hamsters [21–24] but not rats [16]. In
the Sertoli cell-specific androgen-receptor knockout mouse
model (SCARKO), claudin-3 mRNA expression was signifi-
cantly lower than in wild-type (wt) mice, and claudin-3 protein
failed to localize to the Sertoli cell TJ [21]. Additionally, a
marked decrease in TJ function occurred in the SCARKO
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model as shown by permeability to a biotin tracer [21].
Collectively, these data support a role for gonadotropins in the
maintenance of functional Sertoli cell TJs in vivo; however, the
role of gonadotropins during the initial formation of Sertoli cell
TJs in vivo remains unclear.

The aim of this study was to assess hormonal regulation of
the initial formation of functional Sertoli cell TJs in vivo
through the administration of the potent and nonaromatizable
androgen dihydrotestosterone (DHT) to i) the gonadotropin-
deficient hypogonadal (hpg) mouse and ii) the hpgþtgFSH
mouse. The hpg mouse has a naturally -occurring Gnrh1 gene
deletion, resulting in functional FSH and LH deficiency [25–
30]. Spermatogenesis in adult hpg testes is arrested at the
pachytene stage of meiosis, and TJs appear disorganized by
electron microscopy [27, 31–33]. The hpgþtgFSH mouse
expresses pituitary-independent circulating human FSH [25] at
physiological levels that induce incomplete spermatogenic
development, which proceeds through meiosis but fails at
spermiogenesis [25, 34]. It was hypothesized that Sertoli cell
TJs are structurally impaired and nonfunctional in hpg and
hpgþtgFSH mice, providing a valuable experimental platform
to investigate the role of androgen (via DHT), with or without
FSH activity, during the initial formation of functional Sertoli
cell TJs in vivo.

MATERIALS AND METHODS

Animals

Male gonadotropin-deficient hpg and hpgþtgFSH mice (ab.6 line,
expressing human FSH under a pituitary-independent rat insulin promoter II)
were previously described [25, 33]. All animal work was approved by the
South West Area Health Services Animal Ethics Committee. Operative
procedures were conducted under 0.5% ketamine (Parke-Davis, Caringbah,
NSW, Australia) and xylazine (0.01 ml/g body weight; Bayer Australia Ltd.,
Botany, NSW, Australia) anesthesia, which was administered by an i.p.
injection [35]. At the end of experimentation, mice were killed by anesthetic
overdose.

Experimental Design

DHT (Merck, Darmstadt, Germany) was administered to adult (3–4 mo old)
hpg and hpgþtgFSH mice via a 1-cm SILASTIC (Dow Corning, Midland,
MA) implant placed subdermally for 2 or 10 days (n¼ 3 per group) [33]. DHT-
treated mice and age-matched, untreated wt, hpg, and hpgþtgFSH males (n¼
3–5 per group) were killed on the same day. Testes were excized, trimmed, and
weighed, and a slit was cut into the tunica albuginea of the left testis, after
which it was incubated in NHS-linked biotin (10 mg/ml in PBS/0.01 M CaCl

2
;

EZ-Link Sulfo-NHS-LC-Biotin; Pierce, Rockford, IL) for 30 min at room
temperature [20, 22]. This technique is a minor modification to that used
previously [20, 22], as the small size of the hpg testes (;2 mg) meant that
administration of tracer by intratesticular injection was not possible. Therefore,
we compared biotin permeation into adult wt mouse testes by i) intratesticular
injection and ii) immersion of the testes in biotin solution with or iii) without a
small slit in the tunica albuginea [21]. No differences in biotin permeation were
observed between these methods (data not shown), and we chose the method

described above. Testes were then immersion fixed in Bouin solution (4 h) and
stored in 70% ethanol for immunohistochemical analysis. The right testis from
each mouse was immediately snap frozen in liquid nitrogen for RT-PCR
analysis.

Immunohistochemistry

Tissues were embedded in paraffin wax, and 5-lm sections were mounted
onto Superfrost-Plus slides (HD Scientific, Melbourne, VIC, Australia) and
dried overnight at 378C. For morphological analysis, sections were stained with
hematoxylin and eosin, and measurements of tubule diameter and lumen
diameter were collected from n ¼ 3 animals per group, with n ¼ 3 different
sections per animal and n ¼ 10 measurements within each section.
Measurements were recorded using AnalySIS software (Olympus Australia,
Mt. Waverley, VIC, Australia), and the mean and standard deviation for each
group were determined. For immunohistochemical analysis, antigen retrieval
was performed by heating the sections for 10 min in 600 ml of 1 mM
Ethylenediaminetetraacetic acid-NaOH (pH 8.0) [36] in an 800 W microwave.
Sections were then allowed to cool (1 h) before washing for 5 min in MilliQ
water (Millipore, Billerica, MA) and blocked in 10% (v/v) normal goat serum
and 10% (v/v) CAS Block (Invitrogen, Carlsbad, CA) for 1 h. Primary
antibodies, rabbit anti-claudin-11 (1.25 lg/ml, overnight; #36-4500; Zymed,
San Francisco, CA), rabbit anti-claudin-3 (1.25 lg/ml, overnight; #36-1700;
Zymed), and mouse anti-connexin-43 (1:400, overnight; #C8093; Sigma) were
diluted in 10% normal goat serum (Chemicon International, Temecula, CA) in
PBS and applied to the sections at 258C. Negative controls substituted rabbit
IgG at the same concentration for the primary antibody. Sections were then
washed in PBS before incubation (30 min) with goat anti-rabbit/mouse Alexa-
488/546 (Molecular Probes, Eugene, OR) at a 1:400 dilution, and were then
mounted with FluorSave (Calbiochem, La Jolla, CA) and visualized by
confocal microscopy (Fluoview FV300; Olympus).

For qualitative TJ functional analysis, the biotin tracer was visualized
directly using streptavidin Alexa-488 (Molecular Probes) diluted 1:100 in the
secondary antibody solution. Negative controls for biotin staining omitted the
streptavidin Alexa-488 reagent.

Total RNA Extraction and Quantitative Real-Time RT-PCR
Analyses

Total RNA was extracted from frozen mice testes using the RNA Isolation
Kit (Qiagen, Hildens, Germany), and contaminating DNA was removed from
the extract by a DNA-free kit (Ambion; Life Technologies, Carlsbad, CA)
according to the manufacturer’s instructions. Reverse-transcription used AMV-
Reverse Transcriptase (Roche, Mannheim, Germany) and random hexamers as
described elsewhere [16].

Expression of mRNA was quantified using the Roche Light Cycler (Roche)
and FastStart DNA Master Sybr Green 1 systems (Roche). Oligonucleotide
primer pair sequences for the Sertoli cell genes Cldn11, Cldn3, and Rhox5 were
obtained from published sources or were designed using the Primer3 program
online and ordered from Sigma Genosys (Castle Hill, NSW, Australia). Primer
details and PCR conditions, including anneal temperature, elongation time, and
Mg2þ concentration, are presented in Table 1. Primers produced a single band
on DNA agarose gels that corresponded to the target protein as shown by DNA
sequencing (data not shown). Standard curves for PCR analyses were generated
using dilutions of an adult wt mouse testicular cDNA preparation of arbitrary
units. Unless otherwise noted, PCR of all samples was performed using
duplicate reactions for 38 cycles, after which a melting curve analysis was
performed to monitor PCR product purity (see Table 1). Expression data for
Sertoli cell-specific transcripts (Cldn3, Cldn11, Rhox5) were first normalized to
the housekeeper gene, Actb, and then adjusted by a two-step procedure recently

TABLE 1. Primer-specific conditions used for quantitative PCR analysis.

Gene Species Accession no. Primer sequences (50– 30) Size (bp)
[Mg2þ]
(mM)

Anneal temp.
(8C)

Read temp.
(8C)*

Cldn11 (Primer3) Mouse NM_008770 F: CTACGTGCAGGCTTGTAGAGC 208 2.5 64 72
R: GGCACATACAGGAAACCAGATG

Cldn3 (Primer3) Mouse NM_009902 F: AACTGCGTACAAGACGAGACG 143 2.5 64 72
R: GGCACCAACGGGTTATAGAAAT

Rhox5 [53] Mouse NM_008818 F: GCAACACCAGTCCCTGAACA 101 3.5 64 72
R: CAAAATCTCGGTGTCGCAAA

Actb [22] Rat/mouse NM_031144 F: CCGTAAAGACCTCTATGCCAACA 103 2.5 67 72
R: GCTAGGAGCCAGGGCAGTAATC

* Refers to the temperature at which the fluorescence of the PCR product was quantified during LightCycler analysis.
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described [37] to correct for the differences in total Sertoli cell number between
the hpg, hpgþTgFSH, and wt testes (1.29 million, 2.32 million, and 5.15
million cells per testis, respectively [34]). The dilution effect in total testicular
RNA caused by increased RNA from proliferating germ cells was then
corrected for based on ratios of testis weights as described in detail elsewhere
[36]. DHT has no effect on Sertoli cell number in hpg testes [33].

Statistical Analysis

Statistical analysis was performed using SigmaStat for Windows (version
3.5; Jandel Corporation, San Rafael, CA). Treatments were compared to
controls by ANOVA followed by the Student Newman-Keuls test, or where
data was nonparametric, Kruskal-Wallis test, followed by Newman-Keuls
analog (equal Ns). P , 0.05 was used to determine if results were statistically
significant, and data has been expressed as the mean 6 SD, with n¼ 3–5 mice
per group.

RESULTS

Testis Weights 6 DHT Treatment

Untreated hpg testis weights were at 2.5% (P , 0.001) of wt
testis weights, similar to published data [33], while the
untreated hpgþtgFSH testis weights were at 17.0% (P ,
0.001) of wt testis weights and 7-fold larger (P , 0.001) than
the untreated hpg testis weights (Fig. 1A).

No significant change in testis weights was observed in
DHT-treated hpg mice until 10 days of treatment, when the
testes had increased to 7.8% (P¼0.016) of wt values (Fig. 1A).
DHT treatment of hpgþtgFSH mice did not significantly alter
testis weights after 2 or 10 days of treatment compared to
untreated controls (Fig. 1A), which is likely to reflect variable
testis weights in the untreated hpgþtgFSH mice used in this
study.

Development of TJ Functionality and TJ Protein Localization
in hpg and hpgþtgFSH Testes 6 DHT Treatment

Tubule lumen presence and/or formation is a surrogate
measure of TJ functionality [38, 39]. Tubules of untreated hpg
testes, or hpg animals treated with DHT for 2 days, did not
generally contain lumens as shown morphologically (Fig. 1B)
or following quantification of lumen diameter (Fig. 2A);
however, a small percentage (,3%) of the total tubules
examined did show some lumen formation (Fig. 2C). After 10
days of DHT stimulation in hpg animals, lumens were clearly
present (Fig. 1B) in all tubules (Fig. 2C), although these were
smaller than wt animals (Fig. 2A). Lumens were identified in
25% of hpgþtgFSH tubules (Fig. 2C), but in contrast to the
hpg testis, lumen formation had occurred in all tubules after 2
days of DHT treatment in hpgþtgFSH mice (Figs. 1B and 2, A
and C). Changes in tubule diameter occurred in parallel with
lumen diameter following 10 days of DHT treatment of hpg
mice, but no effect of the androgen on tubule diameter was
observed in the hpgþtgFSH groups (Fig. 2B). It is noted that
postmeiotic elongating spermatids were present in some
tubules from both the hpg and hpgþtgFSH groups treated
with DHT for 10 days (Fig. 1B).

We then assessed TJ functionality using the biotin tracer
permeability method. Biotin staining was extensive in the
interstitium of wt testes and only entered the seminiferous
tubules as far as the inter-Sertoli cell TJ, as shown by marked
immunostaining for claudin-11 and claudin-3 (Fig. 3, A and B).
In the hpg testis, biotin staining was present in the interstitium
and also permeated around all cells within the seminiferous
epithelium (Fig. 3). Claudin-11 staining remained present but
was no longer located basally; instead, staining was predom-
inant in adluminal regions of Sertoli cells (Fig. 3A). Claudin-3
staining was essentially undetectable in the seminiferous

epithelium of hpg testes, with apparent interstitial staining also
detected in the negative control (see insert in wt panel, Fig.
3B). After 2 days of DHT treatment to hpg mice, seminiferous
tubules remained permeable to the biotin tracer, which was
present both in the interstitium and epithelium, whereas
claudin-11 staining remained adluminal but had redistributed
basally compared with staining in untreated hpg testes (Fig.

FIG. 1. Changes in testis weights (A) and lumen formation (B), following
DHT treatment. A) Testes from wt, hpg, and hpgþtgFSH mice treated with
DHT for 2 and 10 days were dissected from the mice and trimmed of all
fat, epididymides, and connective tissue immediately after death and
weighed prior to further treatment. Data is mean 6 SD, n¼ 3 per group. a
versus b/c, P , 0.001; b versus c, P , 0.01. Note the log scale on the y-
axis. B) Testicular histology for the same groups as A. Sections (5 lm) are
stained with hemotoxylin and eosin. Arrows indicate the presence of
postmeiotic elongating spermatids in the 10-day DHT treatment groups.
Bar¼ 50 lm.
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3A). Claudin-3 staining was still not detectable in the
epithelium at 2 days of DHT administration (Fig. 3B). After
10 days of DHT treatment, biotin staining was excluded from
most tubules and remained in the interstitium of hpg testes,
similar to the phenotype of the wt testes (Fig. 3). Claudin-11

staining was now predominantly found at basally located inter-
Sertoli cell TJs, which also contained detectable claudin-3 (Fig.
3B).

In hpgþtgFSH testes, biotin staining was present in the
interstitium and permeated throughout some of the seminifer-
ous tubules but was excluded from others (Fig. 3, A and B),
although few tubules contained distinct lumens (Figs. 1B and
2C). Claudin-11 staining was present but disorganized in the
basal area of Sertoli cells just adluminal to the basement
membrane, while claudin-3 was generally absent, although
minor staining for basally located claudin-3 in some tubules
was observed (data not shown).

After 2 or 10 days of DHT treatment, biotin staining was
excluded from most of the seminiferous tubules of hpgþtgFSH
testes and permeated only as far as claudin-11 staining, which
was extensive at basally located TJs (Fig. 3A). As also
observed in the hpg model, redistribution of adluminal claudin-
11 protein occurred in an apical-to-basal manner, evident by
comparison of staining patterns at 2 and 10 days of DHT
treatment. Claudin-3 staining was more prominent at the TJ at
both these time points than in the hpg mouse, but staining was
not extensive (Fig. 3B).

Effect of DHT Treatment on Testicular Gap Junction Protein
Localization

Recent data suggests that gap junctions, which are also
present at the BTB, can regulate BTB dynamics via negative
regulation of TJ proteins and the intracellular adaptor protein,
ZO-1, which is common to both tight and gap junctions [40].
Therefore, we examined the regulation of gap junctions in the
hpg model by colocalization of connexin-43 with claudin-11
(Fig. 3C). In wt mice, connexin-43 and claudin-11 were
colocalized at basally located Sertoli cell junctions. In hpg
mice, connexin-43 no longer colocalized with claudin-11, but
staining for both proteins was similar as it was predominantly
localized adluminally (Fig. 3C). DHT treatment of hpg mice
restored colocalization of both connexin-43 and claudin-11 at
basally located Sertoli cell junctions, but this took 10 days to
occur, mirroring the time course of restoration of BTB function
as shown by biotin tracer permeation (Fig. 3A).

Interestingly, there appeared to be less connexin-43 staining
in the hpgþtgFSH testis compared with the hpg model (Fig.
3C), and most staining was at basally located junctions. DHT
treatment for 2 days caused a rapid re-appearance of connexin-
43 in an adluminal location (Fig. 3C), and this staining was
redistributed to basal junctions following 10 days of DHT
treatment, in a manner similar to that of claudin-11.

Effects of DHT Treatment on mRNA Expression in hpg and
hpgþtgFSH Mice

To confirm the induction of androgen actions by the DHT
implants, the expression of an androgen-regulated Sertoli cell
gene, Rhox5 [41], was determined by qPCR. Relative Rhox5
mRNA expression was 100-fold (P , 0.001) less in hpg
compared to that in wt testes, but was increased 42-fold (P ,
0.001) by 2 days of DHT treatment and remained at high levels
at 10 days of DHT treatment (Fig. 4A). In contrast, Rhox5

FIG. 2. Changes in lumen diameter (A), tubule diameter (B), and
percentage of tubules that contained a lumen (C) following DHT
treatment. Lumen diameters (lm; A) and tubule diameters (lm; B) were
quantified in testes from wt, hpg, and hpgþtgFSH mice treated with DHT
for 2 and 10 days. The percentage of tubules that contained a lumen in the
same treatment group is shown in C. Data is mean 6 SD, n¼ 3 per group.
Different letters indicate significant differences between groups (P , 0.05
or greater).

"

FIG. 3. Assessment of TJ functionality and TJ protein localization following DHT treatment of hpg and hpgþtgFSH mice. hpg and hpgþtgFSH mice were
treated with DHT for 2 and 10 days before assessment of TJ permeability with a biotin tracer (green) and TJ protein localization with claudin-11 (A, red)
and claudin-3 (B, red). * indicates adluminal staining of claudin-11. C) Localization of claudin-11 (green) with the gap junction protein connexin-43 (red).
Bar ¼ 50 lm. Insets¼ negative controls.
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mRNA expression in the hpgþtgFSH mouse was not
significantly different than that in the wt mouse (Fig. 4A),
and DHT treatment did not significantly alter Rhox5 expression
in this model (Fig. 4A).

Relative expression levels of Sertoli cell Cldn11 mRNA
were 3-fold (P , 0.001) less in hpg compared to those in wt
mice and were significantly increased (P¼ 0.011) in the 10 day
DHT treatment group (Fig. 4B). Administration of DHT to
hpgþtgFSH mice for 10 days also increased Cldn11 expression
levels 3-fold (P¼ 0.001; Fig. 4B). Relative Cldn3 levels in hpg

testes were .100-fold less than those in wt testes (P , 0.001)
and were upregulated 8-fold (P ¼ 0.001) by 10 days of DHT
treatment (Fig. 4C). In contrast, Cldn3 expression levels in the
hpgþtgFSH were only 8-fold less than those in the wt (P ,
0.001), and no trend was observable with DHT treatment,
although significant within-group animal variation in the
untreated mice may have masked any androgen effects.

DISCUSSION

Androgen and FSH have established roles regulating Sertoli
cell TJ function in mature testes; however, there has been little
direct investigation of hormonal requirements for the initial
formation of TJs in vivo. This study used a naturally occurring
model of gonadotropin deficiency, the hpg mouse, to
investigate TJ formation in vivo during the selective hormonal
maturation of prepubertal testes. We showed that the hormone-
deficient background of the hpg testes results in the absence of
normal Sertoli cell TJ assembly and function. The present
findings reveal that androgen actions alone stimulate the
development of structurally and functionally competent Sertoli
cell TJs in hpg testes. FSH actions alone were insufficient to
induce the completion of Sertoli TJ formation in the
hpgþtgFSH model; however, FSH activity markedly enhanced
androgen-induction of functional Sertoli cell TJs.

Androgen induction of Sertoli cell TJ formation was
determined by administration of DHT at a dose that provides
maximal androgen-specific initiation of qualitatively normal
spermatogenic development in hpg testes [33]. Males were
treated with DHT rather than testosterone to avoid aromatiza-
tion of administered androgen to estradiol, which can induce
pituitary FSH secretion in hpg mice [31, 37, 42]. As such,
endogenous serum FSH levels in DHT-treated hpg mice
remained at less than 4% of wt values, similar to untreated hpg
mice [30], meaning that the effects seen for DHT in these
animals were independent of significant FSH activity. In this
study, short-term DHT treatment for 10 days increased hpg
testis weights and seminiferous tubule diameters to a similar
extent as described elsewhere [42], and also increased the
expression of Rhox5, a known androgen-dependent and Sertoli
cell-specific gene in the postnatal testis [41, 43].

The ability of FSH to stimulate Sertoli cell TJ formation was
determined using hpgþtgFSH mice [25], in which pituitary-
independent FSH expression allowed investigation of FSH
action in isolation or combined with DHT [34]. Interestingly,
testis weights in hpgþtgFSH mice treated with DHT were not
significantly increased by 10 days, which we ascribed to larger
than expected, untreated hpgþtgFSH testes in this study.
Likewise, Rhox5 expression was not significantly increased in
DHT-treated compared to untreated hpgþtgFSH testes, due to
individual variations within the untreated hpgþtgFSH group.
However, elevated Sertoli cell Rhox5 expression in untreated
hpgþtgFSH compared to non-tg hpg testes supports recent
work describing increased testicular Rhox5 expression after
treatment of hpg males with exogenous FSH [44], thus
providing strong in vivo evidence for FSH-regulated Rhox5
transcription. Postmeiotic spermatids were consistently ob-
served in DHT-treated hpg and hpgþtgFSH testes after 10
days, which, when combined with changes in mRNA
expression and localization of TJ proteins in these testes (see
below), all demonstrate androgen-initiated spermatogenic
development. Although not quantitated in this study, it is
expected that DHT-stimulated spermatid numbers would be
greater in the hpgþtgFSH testis rather than the hpg testis, based
on the known ability of FSH to stimulate additional round
spermatid formation in androgen-treated hpg mice [34, 42].

FIG. 4. Total testis Rhox5, Cldn-11, and Cldn-3 expression levels in
response to DHT treatment in hpg and hpgþtgFSH mice. Total RNA was
extracted from frozen testes and reverse transcribed for real-time
quantitative PCR analysis of the Sertoli cell androgen-regulated gene
Rhox5 (A), Cldn11 (B), and Cldn3 (C) in adult wt mice, adult hpg, and
hpgþtgFSH mice that had received the pure androgen DHT for 2 days and
10 days. The measured mRNA transcripts were adjusted for Actb
(housekeeping gene as loading control), plus differences in Sertoli cell
number and testis weight (to account for dilution by germ cells) as detailed
in the text. Data is mean 6 SD, n ¼ 3–5 per group (as indicated in A).
Different letters indicate significant differences between groups with P ,
0.05 or as specified in the text.
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Additionally, while factors locally secreted by meiotic and
postmeiotic germ cells may contribute to TJ protein localiza-
tion and BTB function (e.g., TGFb3 [17], GDF9 [45], for
review see [46]), the available data suggests a negative impact
of these factors on BTB function, with no positive mediators
yet described.

Our data show differential regulation of the two TJ proteins
claudin-11 and claudin-3 in the hpg testis, which we have
demonstrated, by biotin tracer permeability, has a nonfunc-
tional BTB. Claudin-11 protein was present, but in a
disorganized pattern in adluminal regions of Sertoli cells at
the center of the tubules, whereas claudin-3 protein was
undetectable. In adult wt mice, both proteins are found in
functional Sertoli cell TJs, but claudin-3 is only transiently
expressed during stages VII–X when premeiotic germ cells
translocate across the BTB [21, 23, 24], whereas claudin-11 is
present across all stages. Hence, it is currently believed that
claudin-3 is involved in newly formed TJs that appear during
BTB remodeling [23], and its absence in the hpg testis is
consistent with the lack of functionality of the BTB.
Additionally, the disorganized claudin-11 pattern and lack of
claudin-3 in hpg mice are consistent with other observations
that inter-Sertoli cell junctional complexes, which include TJs
and gap junctions [7], are rudimentary in this model [32]. In
other animal models where circulating levels of gonadotropins
are reduced, either by GnRH antagonist treatment [20] or by a
change in photoperiod [19, 22], we have also demonstrated that
key Sertoli cell TJ proteins such as claudin-11 or occludin
remain present in the epithelium, albeit localized away from the
TJ in the center of the seminiferous tubules.

Androgen action for 2 days failed to elevate Cldn11 or
Cldn3 mRNA levels in hpg testes but initiated the redistribu-
tion of existing claudin-11 protein basally; however, TJs
remained dysfunctional in hpg mice, and lumen formation was
rare at this time point. Additionally, no claudin-3 protein was
detectable. These observations support in vitro data indicating
that androgen promotes the endocytic recycling of internalized
TJ proteins back to the Sertoli cell surface [16, 17, 47]. Thus,
our findings are consistent with endosomal recycling of
claudin-11 as an androgen-dependent mechanism, which may
be initiated before transcription of TJ proteins in the hpg mouse
in vivo. After 10 days of DHT treatment of the hpg animal,
both claudin-11 and claudin-3 mRNA expression were
upregulated, and both proteins were extensively immunolocal-
ized at functional TJs. These data are consistent with the
known androgen dependency of claudin-3 in the mouse [21]
and the involvement of claudin-3 in newly formed TJs [23].

In comparison to the hpg model, TJ protein localization and
function were, in general, promoted by FSH action in the
hpgþtgFSH testis. In untreated animals, TJ barrier function-
ality varied from functional to dysfunctional between tubules,
indicating that the action of FSH may partially initiate the
formation of TJs in this model. In view of the potential for
synergistic FSH and androgen activity in the development of
hpg testes [34, 42], it is also possible that basal concentrations
of intratesticular testosterone in hpgþtgFSH mice (at levels
equal to those of non-tg hpg or 15%–17% of those of wt [34])
may also contribute to some degree of Sertoli cell TJ
development, which is consistent with previous reports of
sparsely distributed postmeiotic elongated spermatids in
tubules from hpgþtgFSH testes [25, 34].

In hpgþtgFSH testes, claudin-11 immunostaining appeared
marginally adluminal to the TJ, and claudin-3 staining was
occasionally detected. More intense claudin-3 staining at the TJ
was observed after just 2 days of DHT treatment, despite no
increase in relative testicular Cldn3 mRNA expression. This

more rapid appearance of claudin-3 protein may indicate that
FSH directly stimulates testicular claudin-3 protein relocaliza-
tion, as we recently observed in the hamster [22], which is
consistent with the priming role that FSH exerts in the
regulation of Sertoli cell-germ cell adhesion junctions [48–51].
This relocalization of claudin-3 could include a component of
endocytic recycling, as observed for claudin-11 in the hpg
animal [16, 17, 47]. Hence, we propose that a key role of
gonadotropins (FSH- and LH-stimulated androgen activity) is
to promote the synthesis and redistribution of Sertoli cell TJ
proteins to the BTB in vivo.

Recent analysis of TJ and gap junction marker proteins in
the connexin-43 knockout mouse has suggested that Sertoli cell
connexin-43 channels may mediate BTB function [40, 52]. In
both the hpg and hpgþtgFSH models reported here, connexin-
43 protein localization was essentially similar to claudin-11,
with both proteins present at basally located junctions when the
BTB was functional, or adluminally located in Sertoli cells
when the BTB was non-functional. Although this data supports
a role for gonadotropin regulation of testicular gap junctions, it
does not allow any further dissection of the interplay between
TJs and gap junctions at the BTB.

In summary, we have used DHT-induced hpg testis
development to determine the contribution of androgen and
FSH in Sertoli cell TJ formation. It is proposed that
gonadotropins (via FSH- and LH-stimulated androgen activity)
regulate the postnatal formation of a functionally competent
Sertoli cell TJ in the mouse by a temporal mechanism, which
includes the redistribution of existing claudin-11 protein and
the appearance of claudin-3 protein to/at the Sertoli cell TJ,
combined with stimulation of Cldn3 and Cldn11 mRNA
expression. Androgen actions alone stimulated the initial
expression and localization of these TJ proteins at basally
located and functional Sertoli cell TJs. It is further concluded
that while FSH alone stimulated partial TJ formation in the
mouse, its actions markedly enhanced the androgen induction
of complete TJ formation and function.
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